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Cronin effect
High-pT hadrons can be produced coherently from 
multiple interactions in nuclei at very high energies
(LHC), but not at low energies of fixed target 
experiments. Correspondingly, the mechanisms for 
the Cronin enhancement are different.

B.K., J.Nemchik, A.Schafer, A.Tarasov, 
           PRL 88(2002)232303
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Cronin effect at RHIC: predicted and observed
The predicted magnitude was OK, but the shape was not. The employed unintegrated gluon 
density of K.J.Golec-Biernat & M.Wustoff, 1999 (GBW) peakes at too small pT.

M.Kimber, A.Martin & M.Ryskin, 
              2001 (KMR)
A.Martin, M.Ryskin & G.Watt, 
                  2010

More realistic parametrization 
for the unintegrated gluon 
distribution proposed later,

improves the shape 
(with no other modifications 
in the computing code).
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D.Kharzeev, E.Levin,L.McLerran, PL B561(2003)93:

Color Glass Condensate models exaggerated 
the magnitude of the coherence effects
predicting a sizable suppression RdA = 0.75
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R.Vogt et al, arXiv: 1301.3395

B.K., J.Nemchik, A.Schafer, A.Tarasov, PRL 88(2002)232303:

The first successful prediction

B.K., J.Nemchik, A.Schafer, A.Tarasov (2002)

Cronin effect at LHC: predicted and observed
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Predicted vs measured

Not successful either
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parton model dipole description
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Weakness of gluon shadowing

Gluon shadowing is a part of the Gribov inelastic corrections
related to the triple-Pomeron term in diffraction.
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Smallness of the diffractive cross section means weakness of gluon shadowing.

In terms of pQCD this shows a suppression of diffractive gluon radiation, 
which can only be related to smallness of gluonic dipoles.
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Gluon shadowing from DIS

Gluon PDFs in DIS are probed via the DGLAP evolution from the     dependence of            Q2 F2(x,Q2)
So far only the NMC experiment managed to detect a variation of the nuclear PDF with     Q2

−−− Q2 = 40GeV2

Q2 = 4GeV2__

B.K., A.Schaefer, A.Tarasov,1999 (KST)

Q2 = 10GeV2

D.de Florian, R.Sassot, 2004 (DS)
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Gluon shadowing in DIS correspond to inclusion of the higher Fock components of the
photon,                , B.K., A.Schaefer, A.Tarasov,1999 .γ∗ → q̄q + g
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Two-scale hadronic structure
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Small gluonic spots ==> weak gluon shadowing:

Even if small-x gluons overlap in the longitudinal direction, they can miss each other 
in transverse plane, if they are located within small spots. Indeed, for a heavy 
nucleus (lead) the mean number of gluonic spots overlapping with a given one is,

�n� =
3π

4
r20 �TA� = π r20 ρA RA = 0.3

B.K., A.Schafer, A.Tarasov(1999):
the valence quarks carry small 
size gluon clouds, r0 ≈ 0.3fm

Shuryak & Zakhed (2004):
gluonic spots  of small size, 
            are floating in the proton.r0 ≈ 0.3fm
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Evidences for two-scales

As far as gluon radiation is suppressed, hadronic cross sections should rise slowly with 
energy. Indeed, the observed energy dependence of the total pp cross section is well 
described    [B.K., I.Potashnikova, E.Predazzi, B.Povh, PRL 85(2000)507]
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Evidences for two-scales
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Improved predictions

With the same 2002 computer code, but using a contemporary versions of the 
unintegrated gluon distribution (KMR) one can improve the shape of pT-dependence.
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A better choice of the scale 
for gluon shadowung.

POSTDICTIONS: Further improvements
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       Alternative parametrizations 
       for the dipole cross section: 
J.Bartels, K.J.Golec-Biernat & H.Kowalsky,       
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Toward the kinematic bound
Smallest x2 are reached at forward rapidities. This is why it was tempting to
interpret the suppression observed at forward rapidities by BRAHMS and STAR,
as a result of coherence, CGC [D.Kharzeev, Yu.Kovchegov, K.Tuchin (2003)] 

Initial-state energy loss suppresses particle production toward 
the kinematic limit x1->1 [B.K., J.Nemchik, I.Potashnikova, I.Schmidt (2005)] 
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One also approaches the 
kinematic limit at the mid 
rapidity, but high pT.

A possibility to settle this controversy would be  to 
go to higher energies and
check with the nuclear 

effects at the same x2,
but further away from

the kinematic limit
(see LHC data below).
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ISI energy loss
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Suppression of high-pT hadrons by ISI E-loss in AA collisions at RHIC
B.K., J.Nemchik, I.Potashnikova, I.Schmidt, PRC86(20012)054904
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For the first time high-pT hadrons can be produced in pA 
coherently. Data for the Cronin effect at LHC provide a strong 
support for the two-scale hadronic structure and weak gluon 
shadowing. Many popular models are “ruled out”.

The magnitude of the Cronin enhancement predicted in 2002 was 
correct, while the shape of the pT dependence can be improved
applying more realistic up-to-date phenomenology.

Summarizing,

19

Initial state energy loss is expected to suppress significantly
inclusive hadron production at large pT and/or at forward 
rapidities in pA, as well as in AA collisions.



B.	  Kopeliovich,	  Jet	  Quenching,	  BNL,	  April	  15,	  201320

BACKUPS


